Small Business Innovation Research/Small Business Tech Transfer

Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

Touchstone Research Laboratory, along with Alcan Rolled Products ← Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing material replacement for current space structural alloys such as Aluminum-Lithium alloy 2195. AA2050 is available in significantly thicker plate gauges than AA2195 and, as a result, can be machined or formed into ribs, stringers or other types of stiffened structures that have increased stiffness and as a result provide overall structural weight savings potential of approximately 15 to 20%. The AA2050, however, needs more development work and understanding in the area of cryogenic material properties, joining, and design potential to be considered for NASA mission vehicles. Touchstone is proposing a Phase I effort to do cryogenic characterization testing, concept design, and computational modeling and analysis to demonstrate the feasibility of using AA2050 for increased-stiffness, reduced-weight space structures.

Primary U.S. Work Locations and Key Partners

Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
Touchstone Research	Lead	Industry	Triadelphia,
Laboratory, Ltd.	Organization		West Virginia
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia

Primary U.S. Work Locations		
Virginia	West Virginia	

Project Transitions

0

February 2011: Project Start

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137994)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Touchstone Research Laboratory, Ltd.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Jesse Blacker

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - └─ TX12.1.7 Special Materials

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

